Building Interactive Systems Modeling Users **Professor Bilge Mutlu | Spring 2023**

Recap: Class Matras

What are the three mantras of this class so far?

- 1. Everything is a system.
- 2. System design must be human-centered.
- 3. Modeling enables analysis and synthesis.

What we will cover today

- 1. Modeling user types
- 2. Modeling user activities
- 3. Modeling user goals
- 4. Reading group discussion

What do we mean by modeling?

What do we model when we model?

- \rightarrow Who is the users?
 - → Archetypes, tendencies, personas
- \rightarrow What is the user doing?
 - \rightarrow How, and that, they perform a certain task
- \rightarrow What is the user's goal?
 - \rightarrow What are their states, needs, intents?

Modeling User Types — Who is the user?

Definitions

A **user profile** is a dynamic repository used to categorize, characterize, and prioritize a system's target user groups, sub user groups, and uses (applications) of the system.¹

A **persona** consolidates archetypal descriptions of user behavior patterns into representative profiles, to humanize design focus, test scenarios, and aid design communication.²

¹LeRouge et al. (2013). <u>User profiles and personas in the design and development of consumer health technologies</u>. *International journal of medical informatics*.

² Hanington & Martin (2019). <u>Universal methods of design expanded and revised: 125 Ways to research complex problems, develop innovative ideas, and design effective solutions</u>. Rockport.

How personas are developed?

- 1. Collect rich data on the target users of the system through field research
- 2. Identify behavioral patterns and themes that make up commonalities
- Synthesize similarities across users into clusters that make up aggregate 3. archetypes
- Surveys hide distinguishing characteristics \rightarrow
- No more than 3–5 personas per project \rightarrow
- Represent in page-length descriptions \rightarrow
- Narrative descriptions; life situation, goals, and behaviors; images \rightarrow

Affinity diagramming to generate archetypes²

Example persona presentation³

² Hanington & Martin (2019). <u>Universal methods of design expanded and revised: 125 Ways to research complex problems, develop innovative ideas,</u> and design effective solutions. Rockport.

³ Justinmind: <u>30 must-see user persona templates</u>

7 – © CS-839 Building Interactive Systems | Professor Mutlu | Week 04: User Modeling

Nerdy Nina

"The book is way better than the movie!"

DEMOGRAPHICS

ge:	25
ocation:	Sao Paulo, Brazil
ducation:	Software Engineer
ob:	Q/A at Indie Game Company
amily:	Lives with her boyfriend

GOALS

· Discovering new books / authors to read Finding unique stories

· Cataloging book collection

READING HABITS

- · Fast pace reader
- Never lends books
- · Likes hardcovers and boxed collections
- · Pre-order books to get them first
- · Reads eBooks, but prefer physical copies
- Always finishes a book
- · Loves binge reading and re-reading

TECH

Internet Social Network Messaging Games **Online Shop**

#booklover

#bookaddict

#booknerdproblems

FRUSTRATIONS

- · Keeping track of different series
- · Forgetting a book launch date
- · Finding space for more books

FAVORITE BOOKS

American Gods

Neil Gaiman

Harry Potter

Ready Play

Detour: What is affinity diagramming?

Definition: Affinity diagramming is a process used to externalize and meaningfully cluster observations and insights from research, keeping design teams grounded in data as they design.²

Also a method of qualitative, inductive (bottom-up) data analysis.

² Hanington & Martin (2019). Universal methods of design expanded and revised: 125 Ways to research complex problems, develop innovative ideas, and design effective solutions. Rockport.

Affinity diagramming process: ^{2 4}

- 1. Place observations on post-it notes
- 2. Group and label post-it notes
- 3. Characterize high-level categories

² Hanington & Martin (2019). <u>Universal methods of design expanded and revised: 125 Ways to</u> <u>research complex problems, develop innovative ideas, and design effective solutions</u>. Rockport.

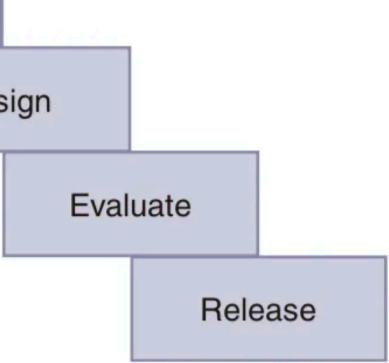
⁴ <u>Muzli - Design Inspiration</u>

	organizing my information		••• Green notes describe an overarching area of concern within the work practice.
	show me what I have to do		••• Pink notes describe specific issues within an area of concern.
daily to-do lists help me track progress	l want it printed in front of me	don't interrupt me with non-critical stuff	••• Blue notes describe aspects of an issue revealed by clusters of yellow notes.
U3 302 likes the prioritization format in her day planner	U2 221 prints calendar several times a day and hangs them next to her computer	U5 523 has his email set so only urgent mail is automatically opened	••• Yellow notes represent a single observation, insight, concern, or requirement firmly rooted in research
U5 518 makes a report for group with day's hot tasks every day	U7 743 transfers meetings from email to wall calendar	U1 12 keeps her inbox behind her so she won't be interrupted	data. These are the building blocks of the affinity diagram.
U1 38 checks things off	U3 351 likes getting an email with		

J1 38 checks things off her to-do list as she finishes them U3 351 likes getting an email with tasks rather than a phone call so she can print it

_ . _. _ .

How do we use personas in system design?


Personas can be used across four stages of system design: $^{\rm 5\ 6}$

- 1. Planning the system by testing requirements
- 2. Scenario-based design
- 3. Evaluating system design, e.g., walkthroughs
- 4. Communication across teams

⁵ Pruitt & Adlin (2010).	The persona	lifecycle: k	<u>keeping p</u>	<u>eople in mi</u>	nd throughout p	<u>oroduct design</u> .	Elsevier.
-------------------------------------	-------------	--------------	------------------	--------------------	-----------------	-------------------------	-----------

⁶ UX Design Collective: <u>A Personas Guideline, From What They Are to How To Use</u>

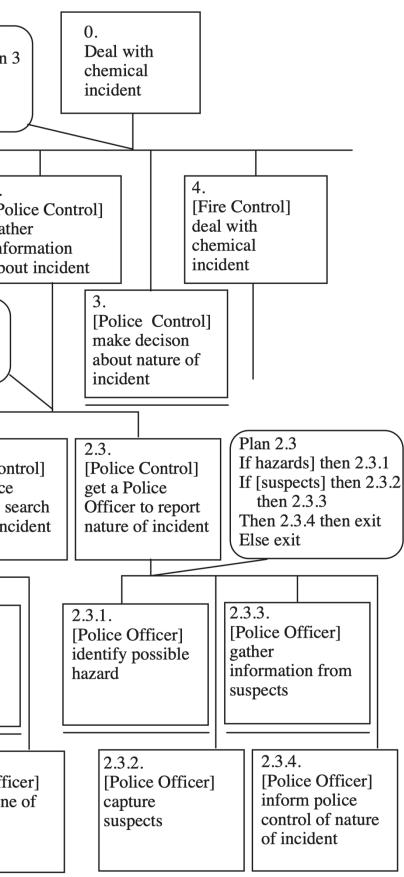
Pl	an
	Des

Modeling User Activities — What is the user doing?

Definition: Building models of user tasks, activities, actions, and behaviors in order to enable an interactive system to track them.

Usually involves building quantitative or computational models of qualitative observations.

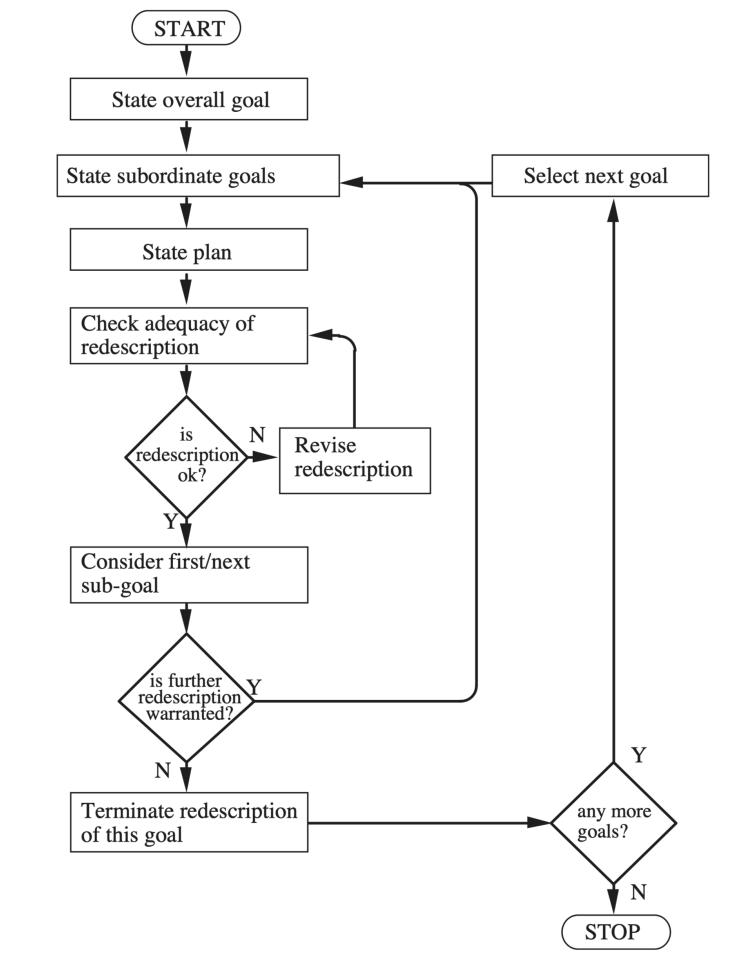
Modeling methods can be *manual* (e.g., hierarchical task analysis) or *automated* (e.g., hierarchical task networks).



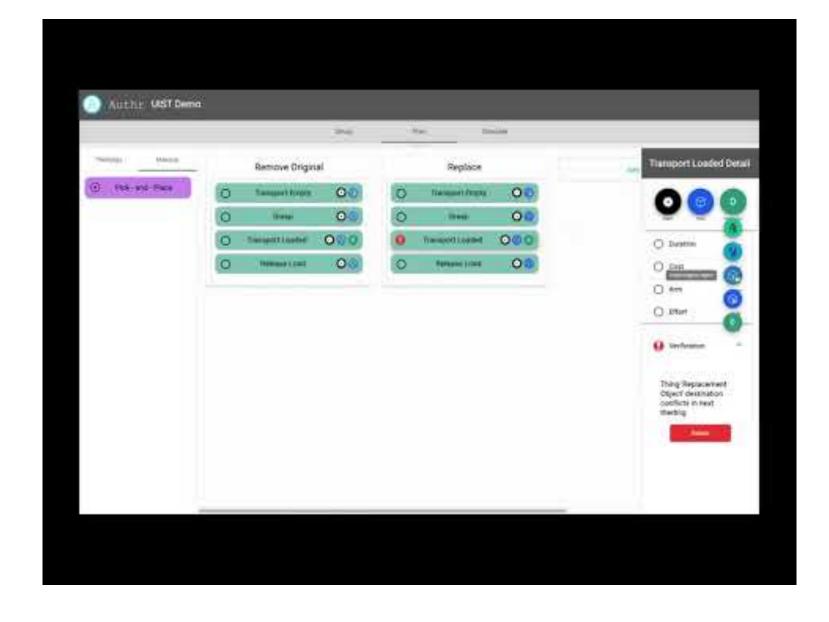
Hierarchical Task Analysis

Definition: A hierarchical task analysis (HTA), which describes the activity or workflow to be analyzed in terms of a hierarchy of goals, sub-goals, operations, and plans.⁷

⁷ Stanton (2006). <u>Hierarchical task analysis: Developments, applications, and extensions.</u> *Applied ergonomics*.


If [l 5 th	n 0. it until nazard] en exit e exit			
Г				
1. [Police Coreceive not from publincident	otice	ıt	2. [Poga inf abo	
I I	Plan 2. Do 2.1 a Do 2.2 t Then ex	then 2		
2.1. [Hospital] inform police control of casualty with respiratory problems		2.2. [Police Conget a Police Officer to s scene of in		
Plan 2.2. Do 2.2.1 Then 2.2.2. Then 2.2.3 Until [suspects] or [hazards] Then exit	arriv	ce Of e at sc cident	cene	
2.2.1. [Police Contrisend Police Office to scenincident			ice Off ch scen	

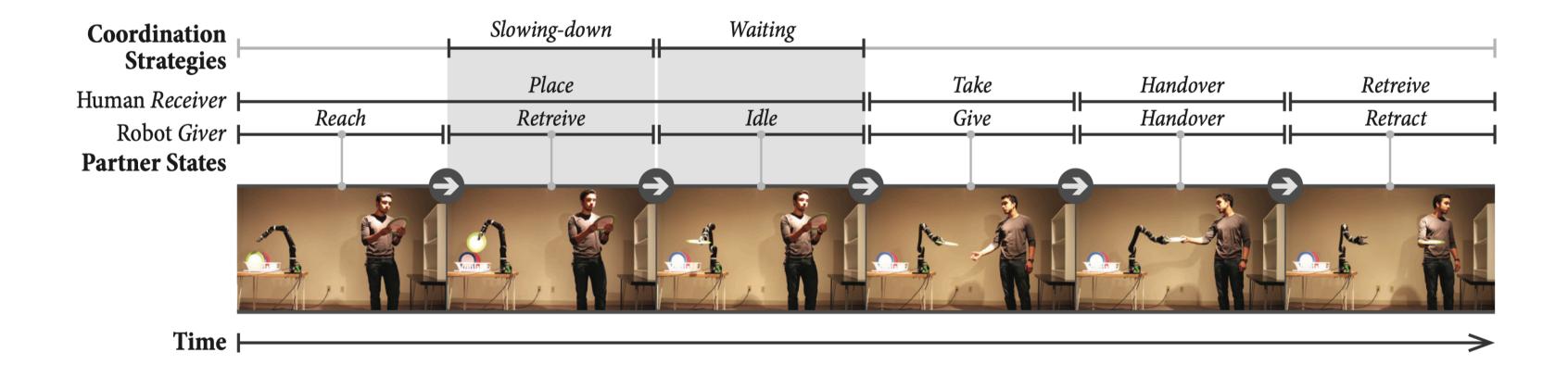
HTA process: 7


- 1. Define the purpose of the analysis
- 2. Define the boundaries of the system
- 3. Access a variety of sources of information about the system
- 4. Describe the system goals, sub-goals
- 5. Keep a small number (i.e., 3–10) of immediate subgoals under any super-ordinate goal
- 6. Link goals to sub-goals; describe the conditions under which sub-goals are triggered
- 7. Stop re-describing the sub-goals when you judge the analysis is fit-for-purpose
- 8. Try to verify the analysis with subject-matter experts
- 9. Be prepared to revise the analysis

Modeling Tools

Example modeling tool: Authr⁸ ⁹

⁸ Schoen et al. (2020). <u>Authr: A Task Authoring Environment for Human-Robot Teams</u>. UIST.


⁹<u>Using Authr to construct HTAs</u>

Modeling User Activities¹⁰

¹⁰ Huang et al. (2015). <u>Adaptive Coordination Strategies for Human-Robot Handovers</u>. In *Robotics: science and systems*.

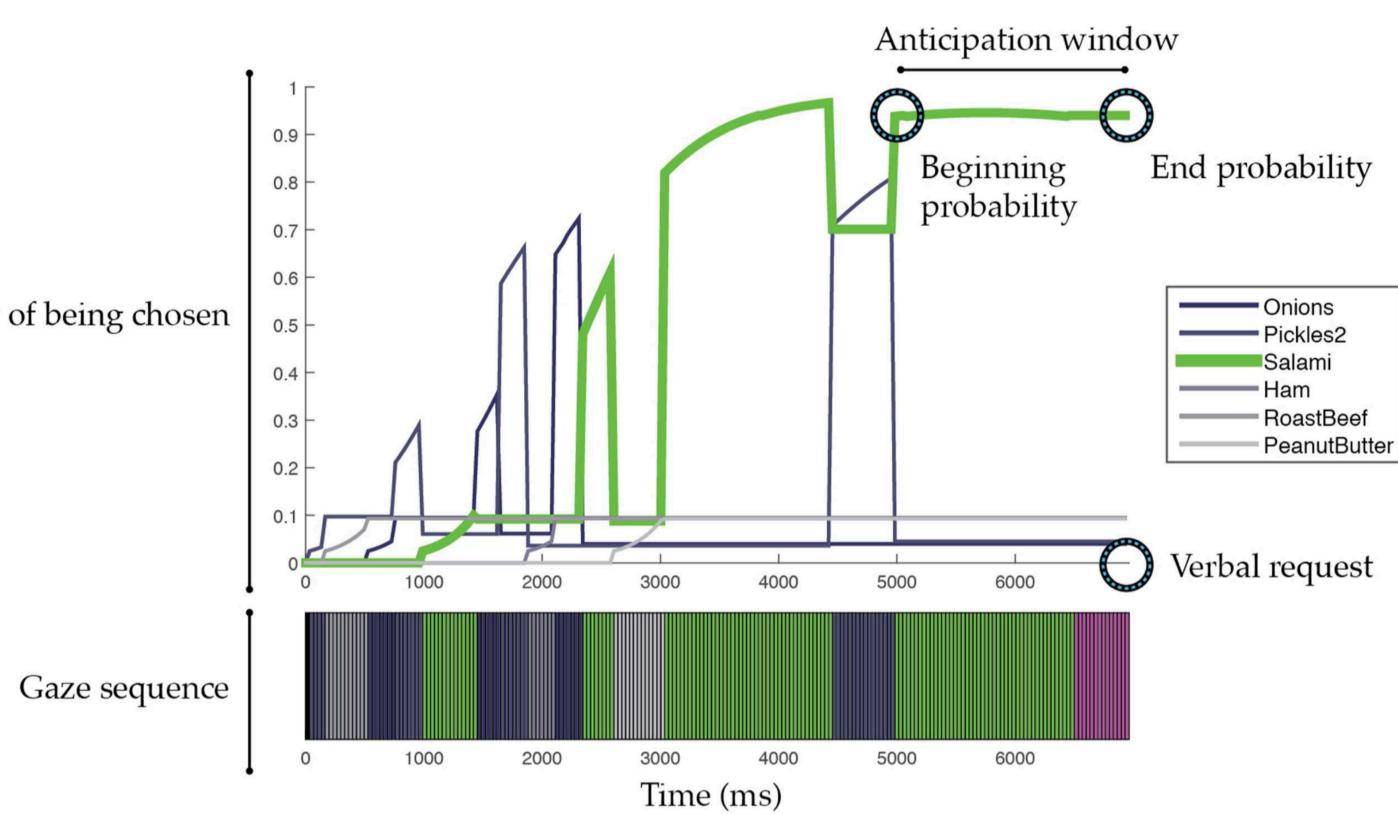
DATA COLLECTION UNLOADING DISHES

SYNCHRONIZED COORDINATION ROBOT-HUMAN HANDOVERS

Modeling User Goals — What is the user's goal?

Definition: Modeling action-goal/intent relationships in order to recognize, track, predict user goal/intent from observations of behavior.

Example of Modeling User Intent¹¹

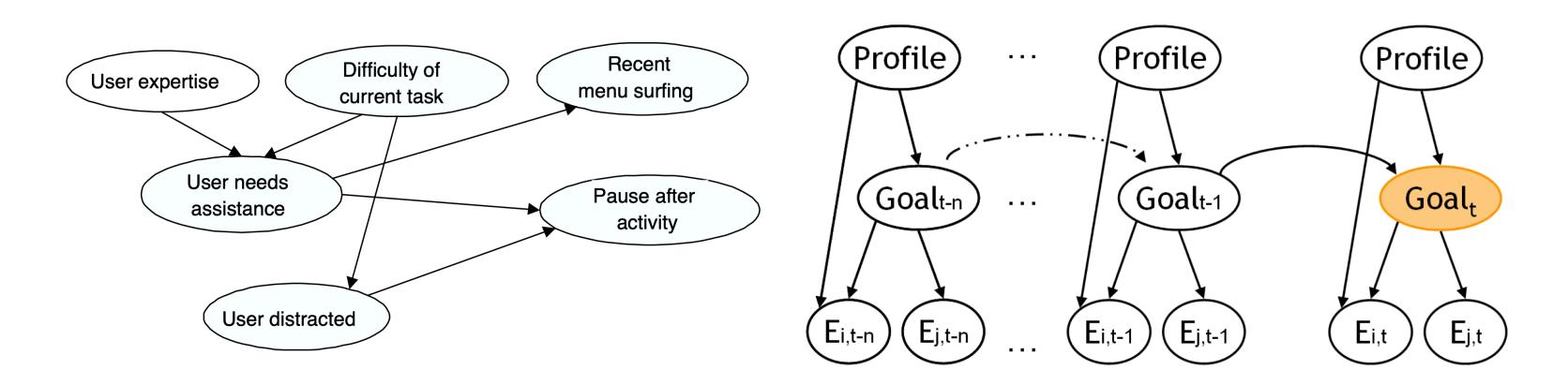

¹¹ Huang et al. (2015). <u>Using gaze patterns to predict task intent in collaboration.</u> *Frontiers in psychology*.

SVM classifier, using features:

- **Feature 1:** Number of glances toward the ingredient before the verbal request 1. (Integer)
- **Feature 2:** Duration (in milliseconds) of the first glance toward the ingredient 2. before the verbal request (Real value)
- **Feature 3:** Total duration (in milliseconds) of all the glances toward the ingredient 3. before the verbal request (Real value)
- **Feature 4:** Whether or not the ingredient was most recently glanced at (Boolean 4. value)

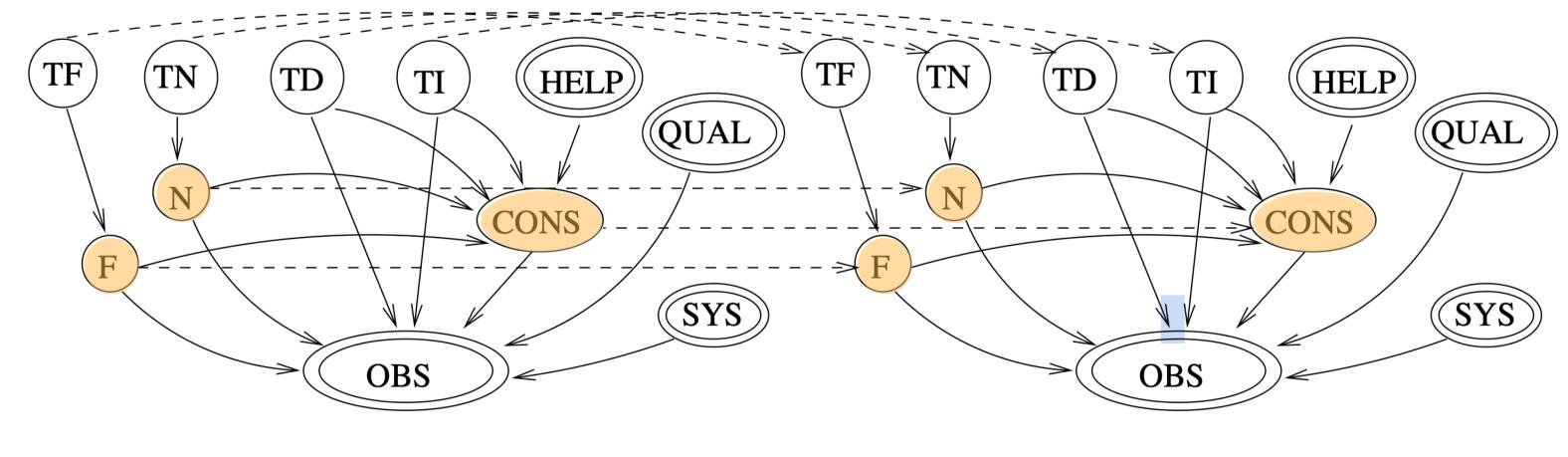
Performance:

- 76.36% accuracy with a baseline of 4.35–11.11% \rightarrow
- Anticipation window of 1831 msec \rightarrow



Probability of being chosen

Bayesian User Models^{12 13}


Decision networks used to model factors that affect whether users need help and goals based on past states.

¹² Horvitz et al. (2013). The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.

¹³ Rohrbach & Schmidt (2008). Intelligent User Interfaces: Modelling the User. University Lecture Artificial Intelligence.

DBNs can predict user states, e.g., frustration (F), neediness (N):^{13 14}

t-1

¹³ Rohrbach & Schmidt (2008). Intelligent User Interfaces: Modelling the User. University Lecture Artificial Intelligence.

¹⁴ Hui & Boutilier (2006). <u>Who's asking for help? A Bayesian approach to intelligent assistance</u>. In Proceedings of the 11th international conference on intelligent user interfaces.

25 — © CS-839 Building Interactive Systems | Professor Mutlu | Week 04: User Modeling

t

How do we build user models?

What we need:

- Observations \rightarrow
- Modeling decisions \rightarrow
- Tools, methods \rightarrow

Questions to consider:

- \rightarrow activities, goals?
- \rightarrow
- \rightarrow

What are we modeling? User types,

What data is available to us?

What is the goal? Tracking, prediction, adaptation, proactive help?

Reading Group Discussion

INTEGRATE Projects

- Semester-long project that brings together sensing, modeling, decision-making, \rightarrow interaction
- Teams of 5 that will be formed on Wednesday \rightarrow
- First milestone in two weeks \rightarrow