Building Interactive Systems Sensing Users **Professor Bilge Mutlu | Spring 2023**

Pop Quiz

What are the three mantras of this class so far?

- 1. _
- 2. _
- 3. _

What we will cover today

- 1. Sensing in interaction
- 2. Sensing modalities
- 3. Interpreting sensed information
- 4. Reading group discussion
- 5. Wednesday HACK 2 review

Forms of Interaction

Recap: What is interaction?

Dictionary definition: mutual or reciprocal action or influence [between a system and its user].¹

The "gulf" model is one characterization of human-system interaction.²

Today, we are focusing on the gulf of execution.

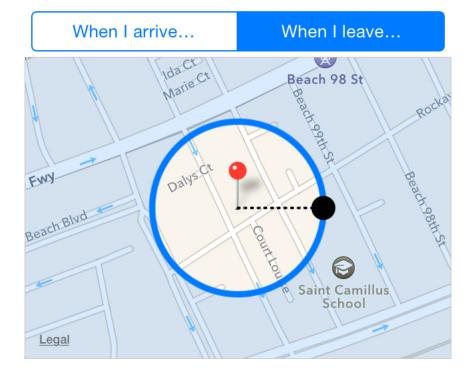
¹<u>https://www.merriam-webster.com/dictionary/interaction</u>

² Dubberly et al. (2009). <u>ON MODELING What is interaction? are there different types?</u>. *interactions*.

How do system get input from users?

Explicit Interaction: the user tells the computer in a certain level of abstraction (e.g. by command-line, direct manipulation using a GUI, gesture, or speech input) what she expects the computer to do.

Implicit Interaction: an action performed by the user that is not primarily aimed to interact with a computerised system but which such a system understands as input. ³


³Schmidt (2000). <u>Implicit human computer interaction through context</u>. *Personal technologies*.

Examples of implicit & explicit interaction⁴

8 add reminder	Ļ
Finish project. No email until 10 a.m.!	
Work 28 E 28th St, New York, NY, USA	
Remind me at this place	

⁴ Images: <u>left</u>, <u>right</u>

Sensing Implications

- \rightarrow Explicit interaction \rightarrow sensing signals user give
- \rightarrow Implicit interaction \rightarrow sensing signals users give off

Sensing in Explicit Interaction⁶

Capabilities needed for sensing in explicit interaction:

- → Representation: Clarity in what input is a needed
- → Interpretation: Mapping between input and action
- → Feedback: Signaling to the user that the correct input has been received (through displays or system action)

⁶ Image

Sensing in Implicit Interaction

Capabilities needed for sensing in implicit interaction:³

- 1. **Perception:** Ability to perceive the use, the environment, and the circumstances
- 2. Interpretation: Mechanisms to understand what the sensors see, hear, and feel
- 3. **Application:** Applications that can make use of this information

³Schmidt (2000). <u>Implicit human computer interaction through context</u>. *Personal technologies*.

nd the circumstances rs see, hear, and feel ation

Shift from Explicit to Implicit

- → Computing is moving from explicit to implicit
- → Clearer divide between explicit and implicit
 - \rightarrow Applications on desktop computers, laptops, tablets \rightarrow *explicit* interaction
 - \rightarrow Applications on mobile devices, IoT, wearables \rightarrow *implicit* interaction
- → Implicit interactions are triggered by **context**

explicit interaction icit interaction

Definition: Context is any information that can be used to characterise the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves.⁵

⁵ Dey (2001). <u>Understanding and using context</u>. *Personal and ubiquitous computing*.

Basic building blocks of context:³

- running on a specific device (e.g. input system, screen size, network access, 1. portability, etc.)
- at a certain time (absolute time, e.g. 9:34 pro; class of time, e.g. in the morning) 2.
- used by one or more users (concurrently or sequentially) 3.
- in a certain physical environment (absolute location, type of location, conditions 4. such as light, audio, and temperature, infrastructure, etc.)
- in a social setting (people colocated and social role) 5.
- to solve a particular task (single task, group of tasks, or a general goal) 6.

³Schmidt (2000). Implicit human computer interaction through context. Personal technologies.

What is a context-aware system?

Definition: A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task.⁵

- Key to context-aware systems is the **situation** abstraction. \rightarrow
- The goal is "applications that do the right thing at the right time for users."⁵ \rightarrow
- Key to building context-aware systems is **sensing**. \rightarrow

⁵ Dey (2001). <u>Understanding and using context</u>. *Personal and ubiquitous computing*.

Challenges in context awareness³

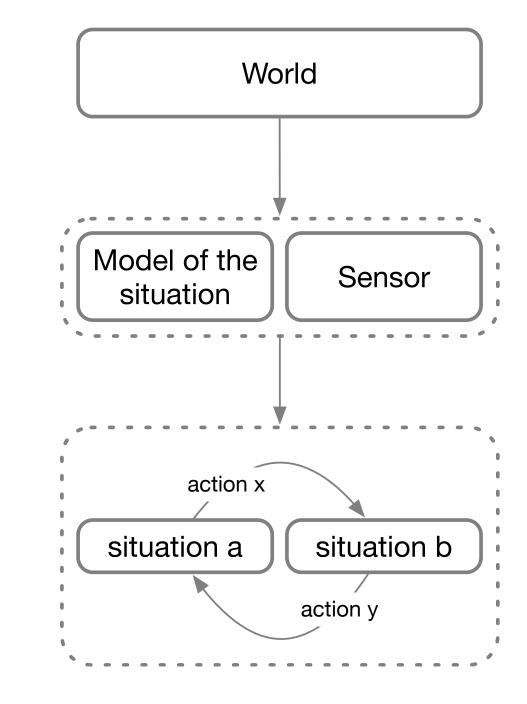
- What happens around an application while the application is in use? Are there any \rightarrow changes at all? \rightarrow **Presence of changes**
- Do the surroundings (behaviour, environment, circumstances) carry any valuable \rightarrow information? Does it matter for the application? \rightarrow Availability Information
- Is capturing and extracting the information feasible, acceptable for the application \rightarrow or device (processing cost, sensor cost, weight, etc.)? \rightarrow Capturing information
- How to understand the information? What interpretation and reasoning is possible, \rightarrow useful? What reaction is appropriate for the application? \rightarrow **Interpreting** information

³Schmidt (2000). Implicit human computer interaction through context. *Personal technologies*.

How do we build context-aware systems?

A simple template: When **[context/situation]** take **[action]** Examples:

- When [I get home], [remind me to take the trash out] \rightarrow
- When [chance of rain is 50%+], [remind me take an umbrella] \rightarrow
- When [the delivery arrives], [open door to accept delivery] \rightarrow
- When [the whole family arrives], [play Christmas album] \rightarrow
- When [I get home from the grocery store], [help me unload the groceries] \rightarrow


How do we sense situations?

The simple template:

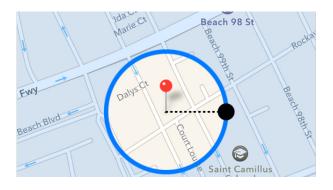
When [context/situation] take [action]

Extended version:

When **[situation]** changes from **[situation_a]** to **[situation b]**, captured by **[sensor]**, take **[action]**

How do we model situations?

Common elements (a consolidated version of Schmidt's building blocks):³


- **Time/place:** Occurring at a certain time, in a certain place, under certain \rightarrow circumstances
- **People:** Involving a certain user or a social setting \rightarrow
- **Task:** Targeting a task or a goal \rightarrow

³Schmidt (2000). <u>Implicit human computer interaction through context</u>. *Personal technologies*.

When **[I get home]**, **[remind me to take the trash out]**

- Time/place: (arrival at) home 1.
- People: main user 2.
- Task: trigger action 3.

- Time/place: 1. location[home, ...]
- 2. People: user[main, ...]
- 3. Task: action[remind, ...]
- Change/trigger:

location[not_home] → location[home]

How to determine change?

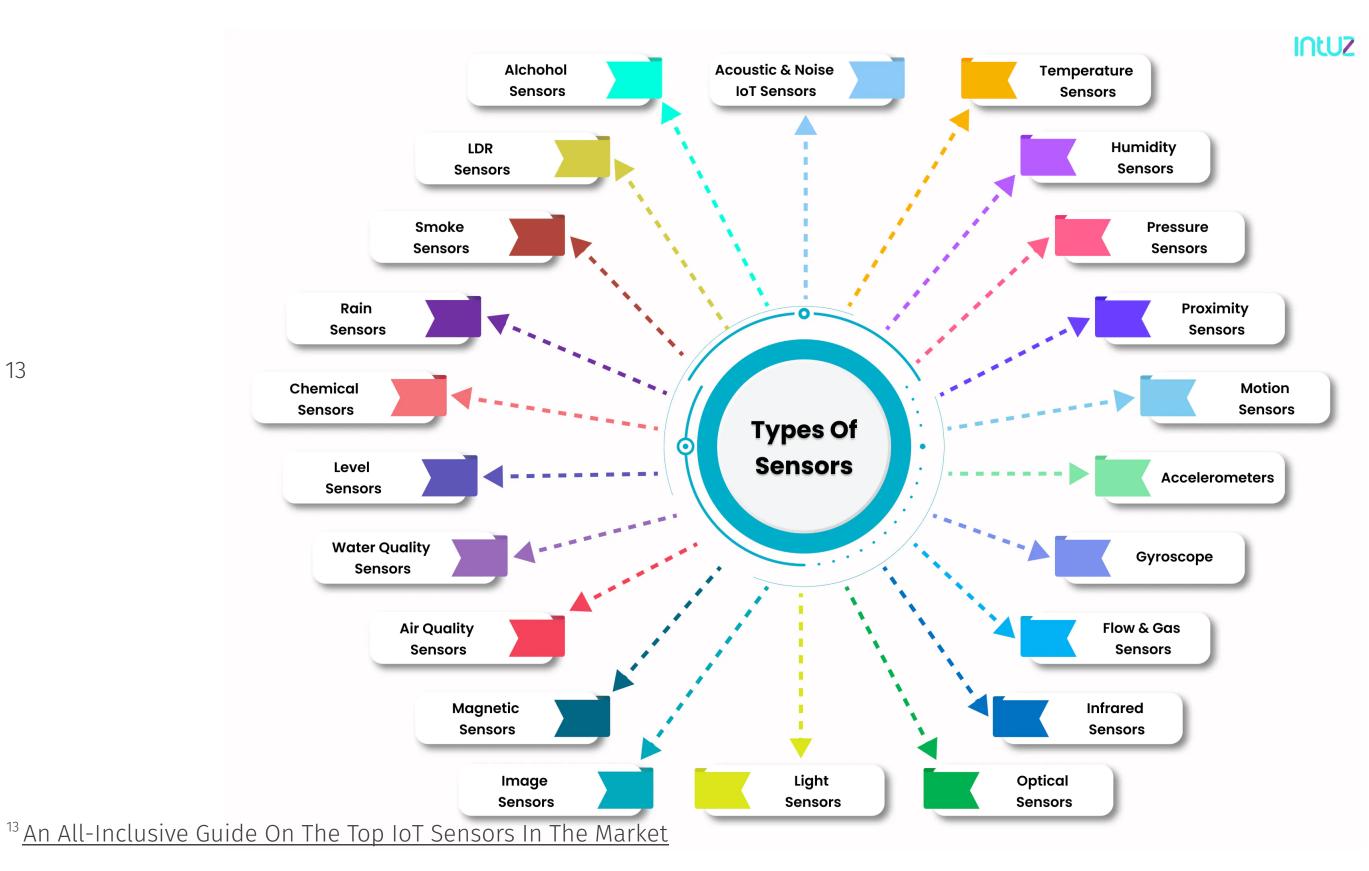
Potential triggers:

- Enter a context \rightarrow \rightarrow
- Leave a context \rightarrow
- While in a context \rightarrow

Potential triggers:

- \rightarrow
- \rightarrow situation[a]

situation[not_a] → situation[a] situation[a] → situation[not_a]


Sensing Modalities

Sensing Approaches

According to Schmidt:³

- Device databases (e.g., a calendars) 1.
- Input to the system (e.g., press of a button, use of an application) 2.
- Active environments (e.g., cameras, RFID tags) 3.
- Context-sensing components (e.g., sensor suite that recognizes "driving") 4.

³Schmidt (2000). <u>Implicit human computer interaction through context</u>. *Personal technologies*.

13

Emerging Sensing Approaches

- → From "traditional" sensors to "non-sensors"
 - \rightarrow E.g., Synthetic Sensors⁸
- \rightarrow Sensors that use existing infrastructure
 - \rightarrow E.g., Wall++⁹
- \rightarrow Sensors that generate their own power
 - \rightarrow E.g., Sozu¹⁰

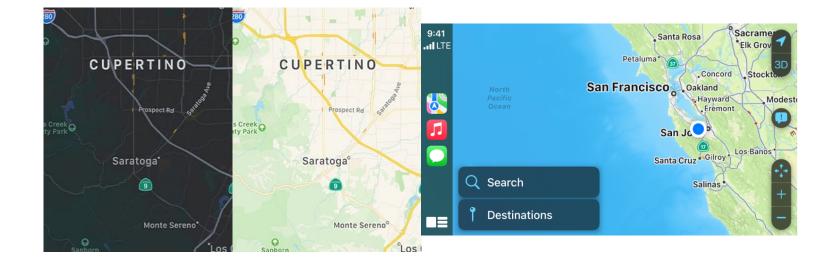
⁸ Laput et al. (2017). <u>Synthetic sensors: Towards general-purpose sensing</u>. In CHI 2017. [Video]
⁹ Zhang et al. (2018). <u>Wall++ room-scale interactive and context-aware sensing</u>. In CHI 2018. [Video]
¹⁰ Zhang et al. (2019). <u>Sozu: Self-powered radio tags for building-scale activity sensing</u>. UIST 2019. [Video]
²⁵ – © CS-839 Building Interactive Systems | Professor Mutlu | Week 03: Sensing Users

Sozu

Self-Powered Radio Tags for Building-Scale Activity Sensing

Interpretation

What do we do with sensor information?


General approaches:

- 1. **Adapt** much more common, often background processes, users could opt out
- 2. **Proactive action** less common, can be disruptive, usually requires opt in

s, users could opt out y requires opt in

Adapt^{3 7}

- \rightarrow Adapt I/O to the current situation
- \rightarrow Limit need for input
- \rightarrow Reduce selection space
- → Manage interruptions

³ Schmidt (2000). <u>Implicit human computer interaction through context</u>. *Personal technologies*.

⁷ Images: <u>top-left</u>, <u>top-right</u>, <u>bottom-left</u>, <u>bottom-right</u>

Proactive Action

- Automate actions the user might take \rightarrow
 - E.g., emailing meeting attendees that the user is running late (e.g., Donna¹¹) \rightarrow

••••••• Verizon LTE ••• \$ 95% ••• 10:05 Saturday, November 16 © Donna now Send an email to let attendees know your ETA? Dinks with Scott slide to view	Thursday, November 22 +	d. Head southeast on Steuar Destination will be on the r Arshad Tayyeb (-9 mins) updated just now Tansamence Redwood Park
Donna 25m app Leave by 9:44 PM catch the 22 for 10:15 PM Drinks with Scott	Call an Uber	The Masting
Donna 35m ago Call with Rebecca" starts at 9:35 PM.	54° and sunny. Bring a sweater!	Eng Meeting 1:30PM - 2:30PM 589 Howard St
> slide to unlock	Conference call with Nicole SicoleSkype	

¹¹ Image

Reading Group Discussion

- 1. **R1:** Overstimulation of senses, e.g., when you're at Disney World. Five sensing: more objective for communication; more subjective senses are harder to work with.
- 2. **R2:** Users are reluctant to allow cameras; more concern about "who was doing something," rather than "what was done."
- **R3:** Making sense of sensing from different cameras triangulation; valuable 3. insights from what is sensed. Classroom is very complicated; different teaching formats. Interpretation is hard to operationalize (e.g., engagement). Qualitative interpretation of sensor data can be important. Example: capturing student posture, which might have different causes.
- Privacy, security questions around sensing: What is sensed, what is stored (e.g., \rightarrow featurizing data), protecting what is collected.

FACI 2 Preview

HACK 2: Sensing Users¹²

- 1. Brainstorm an implicit interaction application
- 2. Models of the abstraction, system
- 3. Prototype the application
- 4. Demonstrate the application
- \rightarrow #1, #2 are due in 1 week
- \rightarrow #3, #4 are due in 2 weeks
- \rightarrow Report due in 2 weeks + 2 days

¹² Image